Lie Symmetry and Exact Solution of (2+1)-dimensional Generalized Kadomtsev-petviashvili Equation with Variable Coefficients
نویسندگان
چکیده
The simple direct method is adopted to find Non-Auto-Backlund transformation for variable coefficient non-linear systems. The (2+1)-dimensional generalized Kadomtsev-Petviashvili equation with variable coefficients is used as an example to elucidate the solution procedure, and its symmetry transformation and exact solutions are obtained.
منابع مشابه
Exact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation
In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.
متن کاملAn Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation
In this paper, variational iteration method (VIM) is applied to obtain approximate analytical solution of the (2 + 1)-dimensional potential Kadomtsev-Petviashvili equation (PKP) without any discretization. Comparisons with the exact solutions reveal that VIM is very effective and convenient.
متن کاملA new note on exact complex travelling wave solutions for (2+1)-dimensional B-type Kadomtsev-Petviashvili equation
Exact solutions of the (2+1) – dimensional Kadomtsev – Petviashvili by Zhang [Zhang H., Applied Mathematics and Computation 216 (2010) 2771 – 2777] are considered. To look for ”new types of exact solutions travelling wave solutions” of equation Zhang has used the G’/G – expansion method. We demonstrate that there is the general solution for the reduction by Zhang from the (2+1) – dimensional Ka...
متن کاملGeneralized Kadomtsev-Petviashvili equation with an infinite dimensional symmetry algebra
A generalized Kadomtsev-Petviashvili equation, describing water waves in oceans of varying depth, density and vorticity is discussed. A priori, it involves 9 arbitrary functions of one, or two variables. The conditions are determined under which the equation allows an infinite dimensional symmetry algebra. This algebra can involve up to three arbitrary functions of time. It depends on precisely...
متن کاملOptimization of solution Kadomtsev-Petviashvili equation by using hompotopy methods
In this paper, the Kadomtsev-Petviashvili equation is solved by using the Adomian’s decomposition method , modified Adomian’s decomposition method , variational iteration method , modified variational iteration method, homotopy perturbation method, modified homotopy perturbation method and homotopy analysis method. The existence and uniqueness of the solution and convergence of the proposed...
متن کامل